ICE PATCHES AND LANDSCAPE ARCHAEOLOGY

The discovery of rich and diverse organic artifacts and associated paleoecological material from melting ice patches has provided an unexpectedly rich window on Alpine life (Todd et al. 2017) and regional (Lee 2010, Lee 2012) archaeological records. Like the coastal and mountainous landscapes of those regions, the ice patches have not been systematically explored by archaeologists. In our recent models, are likely relevant). Beginning in 2015 our team has been exploring a series of sites that suggest cultural connections among the ice patches and surrounding prehistoric landscapes. We have found that the ice patches have yielded rare, spectacular artifacts, but also to consider how the ancient human societies that used these areas may have influenced the landscape. This paper describes the results of our recent investigation of ice patches in a high elevation area of the Greater Yellowstone Ecosystem (GYE) that has yielded both reliable and interesting new data on prehistoric life in the region.

ABSTRACT

The alpine archaeological record above 3000m of Greater Yellowstone Ecosystem has received much less research attention than the adjacent lowland areas. Melting ice patches that have existed past the melt-out of ice patches identified by Craig Lee's model of likely preserved organics. So many models of high elevation use of the Greater Yellowstone Ecosystem (GYE) have emphasized evidence of logistically organized hunting parties using features such as the hunting blinds shown here. In 2015 & 2016, survey and site documentation focused on a high elevation (~3200‐3500m) alpine area with several ice patches that have likely persisted for millennia. The oldest organic artifact described here is a flint knife recovered from an ice patch in 2015.

In 2015, since 2002 a high elevation, back country research (the GRSLE project) has recorded locational and descriptive data on over 170,000 prehistoric artifacts and raised the question of which areas are the most likely to be productive of organic artifacts. The examples presented here give a strong indication that the convergence of ice and stone tool models can provide the potential unexpectedly rich insights into shifting alpine landuse patterns. In the areas described here, indications are that not only could the ice patches been focal points for hunting activities, but also features that have may have conditioned decisions on site selection and management.

In addition to the chipped stone materials, we have recorded a series of spectacular, melting out of ice patches identified by Craig Lee’s model of likely preserved organics. So far, we have recorded two large groups, including the hunting blinds shown here. The oldest organic artifact described here is a flint knife recovered from an ice patch in 2015.